Nuclear Industry

In no sector of engineering are reliable material properties data more important than in the field of nuclear energy. This refers to the different categories of materials for nuclear reactors and nuclear waste management such as cladding materials, absorbers, structural materials, fresh and spent fuels, and other waste forms.

The thermodynamic and thermophysical properties are the main focus of our product line for nuclear materials testing. These, of course, have to be completed by mechanical properties for establishing a comprehensive material properties data base.

DSC 404 F1 Pegasus® – High-Temperature DSC

The NETZSCH DSC 404 F1 Pegasus®, High-Temperature Differential Scanning Calorimeter, allows the determination of specific heat and caloric effects in a broad temperature range with outstanding reliability, best resolution and accuracy. The high vacuum tight design, various furnaces and sensors, easily interchangeable by the user, make the DSC 404 F1 Pegasus® to an ideal tool for DSC measurements at the highest level for research at universities and development tasks at the industrial sector.

STA 449 F1 Jupiter®

With the STA 449 F1 Jupiter® NETZSCH is setting new standards. Unlimited configuration flexibility and unmatched performance are the foundations for a great variety of application possibilities in the fields of ceramics, metals, plastics, and composites over a broad temperature range (-150°C ... 2400°C).

DSC 404 F3 Pegasus® – High-Temperature DSC

The DSC 404 F3 Pegasus®, High-Temperature Differential Scanning Calorimeter, offers a high flexibility for all DSC and DTA applications in quality control and product development. Furnaces and DSC/DTA sensors are available for a broad temperature range (-150 ... 2000°C). Numerous upgrade possibilities allow adaption of this cost-effective calorimeter system to sophisticated applications.

STA 449 F3 Jupiter®

The STA 449 F3 Jupiter® combines the advantages of a high sensitive thermobalance and a true Differential Scanning Calorimeter. Various furnaces and TG, TGA-DTA and TGA-DSC sensors can be used, whereby the system can be easily optimized for the most versatile applications.

TMA 402 F1/F3 Hyperion® - Thermomechanical Analyzer

What sets the TMA 402 F1/F3 Hyperion® apart is the modular concept of interchangeable furnaces covering the temperature range from -150°C to 1550°C, which are also compatible with other NETZSCH instruments. A large number of sample holder types and adjustment possibilities are available. The TMA 402 F1/F3 Hyperion® can be operated with a broad range of force, without added weight, digitally programmable from -3 N to 3 N.

DIL 402 E/7

The DIL 402 E dilatometer can be operated up to 2400°C or 2800°C with an optical pyrometer and a graphite furnace.

LFA 427 - Laser Flash Apparatus / Pyrometer version for up to 2800°C

Outstanding attributes of the LFA 427 are high precision and reproducibility, short measuring times, variable sample holders and precisely adjustable atmosphere conditions in the application range from -120°C to 2800°C. The LFA 427 is the most powerful LFA system for use in research & development.

LFA 457 MicroFlash® - Laser Flash Apparatus

The LFA 457 MicroFlash® is the most modern product for the determination of the two thermophysical properties, thermal diffusivity and conductivity, in the range from -125°C to 1100°C. Its compact, vacuum-tight construction, automatic sample changer and functional software guarantee the highest effectiveness for challenging materials testing.